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• Ratio of exp diameter of L2-bdd MG and the std
of its last term cannot exceed

√
3.

• Exhibit a one-parameter family of stopping times
on sBM for which the

√
3 upper bound is attained.

• Optimal when payoff for stopping at t is diameter
D(t) minus the accumulated cost ct

• Maximal drawdown - its expectation is bounded
by
√

2 times the std of the last term.

• Dubins & Schwarz bounds 1 and
√

2 for ratios of
exp maximum and maximal absolute value of the
MG and the std of its last term.
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Dubins & Schwarz: ratio between E[M ] of a mean-
zero L2-bdd MG (u.i., well defined terminal element)
and the std of its last term is bounded above by 1.
Attained by MG {X(t) = B(t ∧ τ ) : t ≥ 0}

τ = τd = inf{t ≥ 0 : M(t)−B(t) ≥ d} ,

the first time B displays a drawdown of size d

Purpose: demonstrate that B stopped at time

Td = inf{t ≥ 0 : (M(t)−B(t)∧ (B(t)−m(t)) ≥ d}
attains the least upper bound

√
3 on the ratio of the

expected diameter (D = M −m) to the std of the
last term of any L2-bdd MG.
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T implemented in two stages:

Wait until diameter of size 2d is obtained; B is at
maximum or minimum

if up, continue until a drawdown of size d is displayed;

if down, until a rise of size d is displayed.

Stage 1. RW S with equally likely ±ε increments.
From time to achieve diameter h−ε to time to achieve
h - first exit from interval of length h + ε starting ε
from end-point.
Expected incremental time hε adds up to h(h+ε)

2 as
expected time to achieve diameter h.

Hence, h2

2 for BM, 2d2 for h = 2d.
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Stage 2.
Skorokhod embedding of Exp(1

d)−d by Azéma-Yor
stopping time:

0 = E[MAX− d] → E[MAX] = d

MAX ∼ Exp(
1

d
) → E[TIME] = Var[MAX - d] = d2

Achieved expected diameter 2d+d = 3d with expected
time 2d2 + d2 = 3d2 and 3d√

3d2 =
√

3.
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Dubins & Schwarz - inequality for expected supremum
S of a nonnegative L2-bdd subMG (Gilat 1977: same
as absolute value of a MG): least upper bound on the
ratio of E[S] to L2-norm (square-root of the second
moment) of last term is

√
2.

Bound attained by |B| stopped at time

T = Td = inf{t ≥ 0 : S(t)− |B(t)| ≥ d}
where S(t) is the supremum of |B| on [0, t].

6



One-sided diameters, maximal drawdown D+ and
maximal rise D− (with D = D+ ∨D−)

D+ = sup
t≥0
{X(t)− inf

s>t
X(s)} = sup

t≥0
{MX(t)−X(t)}

Supremum over all L2-bdd MGs X of ratio of E[D+]
to the std of the last term of X is

√
2. Attained by

MG {B(t) : t ≤ T +},
T + = Td

+ = inf{t ≥ 0 : sup
s≤t

A(s)− A(t) ≥ d}
= inf{t > τd : B(t)− inf

τd<s≤t
B(s) ≥ d}

is earliest time drop process A(t) = M(t) − B(t)
attains a drawdown of size d.

Earliest time B attains rise d after drop d.

7



{B2(t)− t : t ≥ 0} is mean-zero MG, Var B(t) = t

The c-problem (Dubins & Schwarz): maximizing
desired ratios is related to finding optimal stopping
time on B for payoff function R(t)− ct, c > 0 being
the cost per unit time of sampling.

R(t) can be M(t), m(t), S(t), D(t) = M(t)−m(t)
and its two one-sided versions.

c-problem formulated as a continuous time dynamic
programming (or gambling) problem, for which a
toolkit is readily available.
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Comment on relevance of Brownian Motion.

Variety of MG inequalities have as extremes segments
of Brownian Motion up to stopping times.

Brownian Motion - universal embedding MG:

Skorokhod 1965: embedding of Z with E[Z] = 0 and
E[Z2] < ∞ in Brownian Motion by a stopping time
T with B(T ) ∼ Z and E[T ] = E[Z2]

Monroe 1972: for right-cont, mean-zero, L2-bdd MG
X, there exists increasing family {Tt : t ≥ 0} of
minimal stopping times such that the process {B(Tt)}
has the same distribution as X
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By L2-bddness, the limiting stopping time
T = limt→∞ Tt is minimal and B(T ) has the same
distribution as the last term of X

Maximum diameter of Brownian path up to time
T dominates respective quantity in any embedded
process.

Consequently, enough to establish inequalities for
Brownian Motion stopped at minimal stopping times.
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Theorem

(i) T = T 1
2c

optimal for c-problem with R(t) = D(t).

(ii) E[T ] = 3
4c2

(iii) Optimal expected payoff E[D(T )− cT ] = 3
4c

Corollary

Expected diameter of L2-bdd MG cannot exceed
√

3
times the std of its last term.

Upper bound
√

3 attained by segment of sBM between
zero and any of the stopping times Td.

Similar theorems and corollaries for D+ via T +.
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Real-valued continuous function q = qc,d on the domain
{(δ, γ, t) : 0 ≤ γ ≤ δ

2 < ∞, t ≥ 0} in R3

q(δ, γ, t) = δ − ct+




0 γ ≥ d

3d− δ − c{γ(δ − γ) + 3d2 − δ2

2 } δ < 2d
(d− γ)[1− c(d + γ)] δ ≥ 2d, γ < d

D(t) = M(t)−m(t) diameter of B by time t
G(t) = (M(t)−B(t))∧(B(t)−m(t)) is gap, minimal
distance of current position from the extremal points
visited so far.

Set payoff Π(t) = D(t)− ct and consider process
Q(t) = Qc,d(t) = qc,d(D(t), G(t), t)
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Q is cond exp payoff under τc,d,t for c-problem given
{B(s) : s ≤ t} with diameter D(t) and gap G(t):

If G(t) ≥ d, τc,d,t = t ; otherwise,

First time after t at which gap G is at least d.

I.e., τc,d,t extends Td to general initial conditions.

Td, with d = 1
2c, optimal for c-problem because:

• Q majorizes the payoff Π

• Q(0) is the expected payoff when using Td

• Q is a superMG

Thus, for every integrable stopping time τ,

E[Π(τ )] ≤ E[Q(τ )] ≤ Q(0) = E[Π(Td)]
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Q superMG same as q excessive in Gambling terms
of Dubins & Savage 1965, 1976

Proof consists of representing Q as piece-wise MG or
superMG between properly defined stopping times.

Q =
3

4c
+

c

2
{[(M(t)−B(t))2−t]+[(B(t)−m(t))2−t]}

Q =
1

4c
+ B(t∗)−m(τ1) + c[(M(t∗)−B(t∗))2− t∗]

t∗ = max(τ1, min(τ2, t))

Q = M∗(τ )−m(τ )−cτ+c[max(W (t∗), 0)2−(t∗−τ )]

W (·) = B(·)−B(τ )
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Some stochastic inequalities of similar nature

P (MAX ≥ kσ) ≤ 1

k2 + 1

P (MAXABS ≥ kσ) ≤ 1

k2

(1 if k ≤ 1, simply Chebyshev-Kolmogorov)

P (MAXDIAM ≥ kσ) ≤ 1

k2 − 1

(1 if k ≤ √
2)
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Open problem: Are dominated locally fair
processes martingales?

There ought to be a theorem to the effect that a
dominated process that leaves small enough intervals
(sub) fairly is a (super) MG, like our Q process.

Counter-example of Jim Pitman: uniform integrability
(rather than domination) is not enough.
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Open problem: the spider process

Larry Shepp reminded us that the
√

3-inequality is a
special case of the spider problem raised by Dubins.

BM is abs BM each of whose excursions has random
sign. The spider process with n ≥ 3 rays is the
extension from BM (n = 2) to an n-valued sign.

Maximal distance from origin is maximal absolute
value of BM, independently of n.

Sum of distances from origin along the rays, reduces
for n = 2 to diameter of BM.

Maximization of expected value of this sum for n ≥ 3
seems harder to handle and requires new ideas.
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