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Example 1. Early origins of health

Conti, Heckman, Lopes and Remi (2011) Constructing
economically justified aggregates: an application of the early
origins of health. Journal of Econometrics.

Here we focus on a subset of the The British Cohort Study
started in 1970.

7 continuous cognitive tests (Picture Language
Comprehension,Friendly Math, Reading, Matrices, Recall
Digits, Similarities, Word Definition),

10 continuous noncognitive measurements (Child
Developmental Scale).

A total of m = 17 measurements on T = 2397 10-year old
individuals.
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Normal factor model

For any specified positive integer k < m, the standard k—factor
model relates each y; to an underlying k—vector of random
variables f;, the common factors, via

Yelfe ~ N(Bfe, X)

where
fe ~ N(0, Ix)
and
T = diag(of,--- ,00)

2
m
Unconditional covariance matrix

V(ne|s,X) =Q=p86"+X
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Variance structure

Conditional Unconditional
var(yie|f) = 02 | var(yie) = Y1y 33 + 0
cov(yie, yje|F) = 0 | cov(yie, yje) = D1y BB

Common factors explain all the dependence structure among
the m variables.
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Solutions

1. /¥ 1g=1.
e Pretty hard to impose!
structure
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Somewhat restrictive, but useful for estimation.

>Geweke and Zhou (1996) and Lopes and West (2004):




Number of parameters
The resulting factor form of 2 has

m(k +1) — k(k —1)/2

structure

Identification

ot parameters, compared with the total

arameters
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Prior . . .

Sl in an unconstrained (or k = m) model, leading to the

ference constraint that
9

k<m+ - —/2m+ -.
4
For example,

New e m =6 implies k < 3,

conditions . .

i e m=7 implies k < 4,

e m =10 implies kK <6,
e m=17 implies k < 12.
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Ordering of the variables

Alternative orderings are trivially produced via
Yi = Ayt

for some switching matrix A.

The new rotation has the same latent factors but transformed
loadings matrix AQS.

y'=ABf te=0"f+e

Problem: (3* not necessarily block lower triangular.
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Solution

We can always find an orthonormal matrix P such that
f=p"P =ABP'
is block lower triangular and common factors
fe = Pfy

still N(O, /) (Lopes and West, 2004).

The order of the variables in y; is immaterial when k is
properly chosen, i.e. when (3 is full-rank.
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Reduced-rank loading matrix

Geweke and Singleton (1980) show that, if 5 has rank r < k
then there exists a matrix @ such that

BR=0 and QQ=1
and, for any orthogonal matrix M,

B+ X =(6+MQ)Y(B+MQ)+ (X—-MM).

This translation invariance of €2 under the factor model implies
lack of identification and, in application, induces symmetries
and potential multimodalities in resulting likelihood functions.

This issue relates intimately to the question of uncertainty of
the number of factors.
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Prior specification

Loading matrix:
Bi ~ N(0, Co) when i # j,
Bii ~ N(0,G)1(Bi >0) when i=1,... k
Idiosyncratic variances
0? ~ 1G(v/2,vs?/2)
where s? is the prior mode of each a,-2 and v the prior degrees
of freedom hyperparameter.

We eschew the use of standard improper reference priors
p(0?) o< 1/02, since such priors lead to the Bayesian analogue
of the so-called Heywood problem (Martin and McDonald,
1975, and lhara and Kano, 1995).
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Gibbs sampler

Factor scores
fr ~ N(Vfﬂ/:_l}’t, Vf)

where V; = (It + 8/EZ71p)7L.
Idiosyncrasies

of ~1G((v + T)/2, (vs* + d)/2)
where d; = (y; — fﬁ,{),(}’i - fﬁ:{)'
First k rows of 3
Bi ~ N(M;, G;)1(Bi > 0)
where
_ —1 —2r/
M, = G (Co poli + o f,-yi)
¢!

Co_lli + 0','_2f'lf;‘~

i

Last m — k rows of 3
Bi ~ N(M;, ;)

where

M; G (G motic+ o7 F'y))

Gl o= GlhkotrE.
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Example 2. Exchange rate data

Monthly international exchange rates.

The data span the period from 1/1975 to 12/1986
inclusive.

Time series are the exchange rates in British pounds of

e US dollar (US)

Canadian dollar (CAN)

Japanese yen (JAP)

French franc (FRA)

ltalian lira (ITA)

o (West) German (Deutsch)mark (GER)

Example taken from Lopes and West (2004)



1st ordering

Variance
structure

Identification

issues

Number of

parameters

Ordering of the E(ﬁb/) =
variables

Reduced-rank

loading matrix

Prior

specification

Posterior

inference

Example 2

2nd ordering

E(Bly) =

New
identification
conditions

Theorem

Posterior inference of (3, %)

us
CAN
JAP
FRA
ITA
GER

us
JAP
CAN
FRA
ITA
GER

0.99
0.95
0.46
0.39
0.41
0.40

0.98
0.45
0.95
0.39
0.41
0.40

0.00
0.05
0.42
0.91
0.77
0.77

0.00
0.42
0.03
0.91
0.77
0.77

E(x]y) = diag

E(xly) = diag

0.05
0.13
0.62
0.04
0.25
0.28

0.06
0.62
0.12
0.04
0.25
0.26
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lllustration of multimodality

ition

Country Factor 1 Factor 2
us 95.1 0
CAN
JAP
FRA
ITA
GER

Variance decompc

0246810
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Marginal posteriors of the idiosyncratic variances when fitting a three-factor structure
to the international exchange rates.
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Example 1: ML estimates

i Measurement Bin Bi2 52
Variance 1 Picture Language 0.32 0.46 0.68
ldentification 2 Friendly Math 057 059 0.34
Number of 3 Reading 056 0.62 0.30
i 4 Matrices 041 051 057
S 5  Recall digits 031 029 0.82
et 6  Similarities 039 053 057
speciication 7 Word definition 0.43 055 0.52
inference 8  Child Dev 2 -0.67 018 0.52

9  Child Dev 17 -0.69 -0.11 051
Varimax 10  Child Dev 19 -0.74 032 0.35
roration and 11 Child Dev 20 -045 033 0.69
factors 12 Child Dev 23 -0.75 042 0.26

13 Child Dev 30 -052 0.28 0.66
o 14  Child Dev 31 -045 025 0.73
petihcatey 15  Child Dev 33 -0.42 0.31 0.73
Theorem 16  Child Dev 52 041 -028 0.76

17 Child Dev 53 -0.69 041 0.36




Example 1: varimax rotation

i Measurement Bin Bi2 &,'2
Variance 1 Picture Language 0.56 0.68
ldentification 2 Friendly Math 0.81 0.34
Number of 3 Reading 0.83 0.30
e I 4 Matrices 0.66 0.57
S 5  Recall digits 0.41 0.82
et 6  Similarities 0.66 0.57
specification 7 Word definition 0.69 0.52
inference 8  Child Dev 2 -0.65 -0.25 0.52

9  Child Dev 17 -0.50 -0.49 0.51
Varimax 10  Child Dev 19 -0.79 -0.17 0.35
roration and 11 Child Dev 20 -0.56 0.69
factors 12 Child Dev 23 -0.85 0.26

13 Child Dev 30 -0.58 0.66
o 14  Child Dev 31 -0.51 0.73
petihcatey 15  Child Dev 33 -0.52 0.73
Theorem 16  Child Dev 52 0.49 0.76

17 Child Dev 53 -0.80 0.36




Example 1: Bayesian estimation

i Measurement Bi Bz 57
Variance 1 Picture Language 0 0,57 0.68
entication 2 Friendly Math 0 081 034
Number of 3 Reading 0 0.83 0.31
i 4 Matrices 0 066 0.56
S 5  Recall digits 0 042 083
loading matrix 6  Similarities 0 066 056
r”w“mf“ 7 Word definition 0 0.7 0.51
inference 8  Child Dev 2 -0.68 0 054

9  Child Dev 17 -0.56 0 068
Varimax 10  Child Dev 19 -0.81 0 035
roration and 11 Child Dev 20 -0.55 0 0.70
factors 12 Child Dev 23 -0.86 0 027

13 Child Dev 30 -0.59 0 0.66
o 14 Child Dev 31 -0.51 0 074
ey 15 Child Dev 33 -0.51 0 0.74
Theorem 16  Child Dev 52 0.49 0 076

17 Child Dev 53 -0.8 0 036
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Correlated factors

Assume that
y ~ N(Bf,X) and f ~ N(0,H)
where H is a non-diagonal covariance matrix.
We can always decompose LHL' = | such that
y~N(BF %) and f*=Lf~ N(O,I)

where §* = (L.

When ( is “dedicated”, there is no guarantee that 5* is also
dedicated.

Only when there is lots of prior information regarding (3 one
can entertain correlated factors.



Modern structured factor analysis

Variance . . . . .
s e Time-varying factor loadings: dynamic correlations
lentification

R Lopes and Carvalho (2007)

parameters
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e e Spatial dynamic factor analysis
Prior
e Lopes, Salazar and Gamerman (2008)
T
Varimax e Spatial hierarchical factors: ranking vulnerability
rotation and Lopes, Schmidt, Salazar, Gomez and Achkar (2010)
correlated
factors
e Sparse factor models
New . .
identifcation Friihwirth-Schnatter and Lopes (2010)
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Parsimonious BFA

Friihwirth-Schnatter and Lopes (2010) introduce a more
general set of identifiability conditions for the basic model

y: = Ny + € €~ Ny (0,X)),

which handles the ordering problem in a more flexible way:

C1.
C2.

C3.

A has full column-rank, i.e. r = rank(NA).

N is a generalized lower triangular matrix, i.e.

h <...</I;, where [; denotes for j = 1,...,r the row
index of the top non-zero entry in the jth column of A, i.e.
/\/jJ % O;AU =0,Vi< /J

A does not contain any column j where A, ; is the only
non-zero element in column ;.
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The regression-type representation

Assume that data y = {yi,...,y7} were generated by the
previous model and that the number of factors r, as well as A
and X, should be estimated.

The usual procedure is to fit a model with k factors,
y: = Bft + €, €~ Nn(0,X),

where B is a m x k coefficient matrix with elements 3 and X
is a diagonal matrix.
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Theorem

Theorem. Assume that the data were generated by a basic factor model
obeying conditions C1 — C3 and that a regression-type representation with
k > r potential factors is fitted. Assume that the following condition holds
for 3:
B1 The row indices of the top non-zero entry in each non-zero column of
3 are different.

Then (r,\, Xo) are related in the following way to (3, X):
(a) r columns of 3 are identical to the r columns of A.

(b) If rank(3) = r, then the remaining k — r columns of 3 are zero
columns. The number of factors is equal to r and Xy = X,

(c) If rank(B) > r, then only k — rank(3) of the remaining k — r
columns are zero columns, while s = rank(3) — r columns with
column indices ji, ..., Js differ from a zero column for a single
element lying in s different rows ri, ..., rs. The number of factors is
equal to r = rank(8) — s, while £y = X 4+ D, where D isa m x m
diagonal matrix of rank s with non-zero diagonal elements
Dy, = BE/J/ for/l=1,...,s.
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Indicator matrix

Since the identification of r and A from 3 by Theorem 1 relies
on identifying zero and non-zero elements in 3, we follow
previous work on parsimonious factor modeling and consider the
selection of the elements of 3 as a variable selection problem.

We introduce for each element 3;; a binary indicator §;; and
define 3;; to be 0, if 6,-j =0, and leave 3;; unconstrained
otherwise.

In this way, we obtain an indicator matrix é of the same
dimension as 3.
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Number of factors

Theorem 1 allows the identification of the true number of
factors r directly from the indicator matrix 9:

k m
r=> 1> 6;>1},

j=1 =1

where /{-} is the indicator function, by taking spurious factors
into account.

This expression is invariant to permuting the columns of §
which is helpful for MCMC based inference with respect to r.

Our approach provides a principled way for inference on r, as
opposed to previous work which are based on rather heuristic
procedures to infer this quantity (Carvalho et al., 2008;
Bhattacharya and Dunson, 2009).
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The Prior of the Indicator Matrix

To define p(d), we use a hierarchical prior which allows
different occurrence probabilities T = (71, ..., 7x) of non-zero

Variance

structure elements in the different columns of 3 and assume that all
‘Nul' indicators are independent a priori given T:

Ordering of the

Redeat ok Pr(6; = 1|77) = 7, 7j ~ B (a0, bo) -

loading matrix
Prior
specification

Posterior
inference

A priori r may be represented as r = 3% | I{X; > 1}, where

J
X1,..., Xk are independent random variables and X; follows a
Beta-binomial distribution with parameters N; = m — j + 1, ao,

and bg.

New

denifctio We recommend to tune for a given data set with known values
Theorem m and k the hyperparameters ag and by in such a way that
p(r|ao, bo, m, k) is in accordance with prior expectations

concerning the number of factors.
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The Prior on the ldiosyncratic
Variances

Heywood problems typically occur, if the constraint

1 —1 2
> » 2 =
of = R (271);i

is violated, where the matrix  is the covariance matrix of y;.

Improper priors on the idiosyncratic variances such as
2 2
p(U,-) X 1/Ui )

are not able to prevent Heywood problems.
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We assume instead a proper inverted Gamma prior

0? ~ G (e, Cio)

2

A

for each of the idiosyncratic variances o

co is large enough to bound the prior away from 0, typically
Cy = 2.5.

Cio is chose by controlling the probability of a Heywood
problem
Pl"(X < C,'()(Qfl),',')

where X ~ G (¢p,1). So, Cip as the largest value for which

Cio/(co —1) < (_71

or

0% ~ G (co, (co — 1)/(S, Vi) -
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The Prior on the Factor Loadings

We assume that the rows of the coefficient matrix 3 are
independent a priori given the factors fy, ..., fr.

Let 32 be the vector of unconstrained elements in the ith row
of B corresponding to 8. For each i =1,..., m, we assume
that

Blo? ~ N (bIO’ B%o; )

The prior moments are either chosen as in Lopes and West
(2004) or Ghosh and Dunson (2009) who considered a “unit
scale” prior where b,0 =0 and B,0 =



Fractional prior

We use a fractional prior (O'Hagan, 1995) which was applied by

Variance

e several authors for variable selection in latent variable models®

Number o

’m”ln The fractional prior can be interpreted as the posterior of a

et el non-informative prior and a fraction b of the data.

rene We consider a conditionally fractional prior for the “regression
model”

§i = X232 + &,

~ ’ ~ / .
where §; = (yi1 -+ yit) and & = (ej1--- 7). X is a
regressor matrix for 39 constructed from the latent factor
:?‘1:;/\\>u:11\<,,‘ matrix F — (f]_ ce fT)/

conditions
Theorem

3Smith & Kohn, 2002; Frithwirth-Schnatter & Tiichler, 2008; Tiichler,
2008.
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Using
p(B207) o< p(§il B2, 07)"

we obtain from regression model:
B2lo? ~ N (biT,Biro?/b),

where b;7 and Bt are the posterior moments under an
non-informative prior:

/

, -1 ~
Br = ((XX¢) "L by = Br(X)y,

It is not entirely clear how to choose the fraction b for a factor
model. If the regressors f1, ..., fr were observed, then we
would deal with m independent regression models for each of
which T observations are available and the choice b=1/T
would be appropriate.
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The factors, however, are latent and are estimated together
with the other parameters. This ties the m regression models
together.

If we consider the multivariate regression model as a whole,
then the total number N = mT of observations has to be
taken into account which motivates choosing by = 1/(Tm).

In cases where the number of regressors d is of the same
magnitude as the number of observations, Ley & Steel (2009)
recommend to choose instead the risk inflation criterion

br = 1/d? suggested by Foster & George (1994), because by
implies a fairly small penalty for model size and may lead to
overfitting models.

In the present context this implies choosing bg = 1/d(k, m)?
where d(k, m) = (km — k(k — 1)/2) is the number of free
elements in the coefficient matrix 3.
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Most visited configuration

Let I" = (/f,...,/;,) the most visited configuration.

We may then estimate for each indicator the marginal inclusion
probability
Pr(0) = 1]y, 1")

under I* as the average over the elements of (6")*.
Note that Pr((S;j\J =1ly,IF)=1forj=1,...,ry.
Following Scott and Berger (2006), we determine the median

probability model (MPM) by setting the indicators 5,’-} in 87 to
1iff Pr(6) = 1ly,I*) > 0.5.
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The number of non-zero top elements ry; in the identifiability
constraint I* is a third estimator of the number of factors, while
the number dy; of non-zero elements in the MPM is yet
another estimator of model size.

A discrepancy between the various estimators of the number of
factors r is often a sign of a weakly informative likelihood and
it might help to use a more informative prior for p(r) by
choosing the hyperparameters ag and by accordingly.

Also the structure of the indicator matrices 87 and 7,
corresponding, respectively, to the HPM and the MPM may
differ, in particular if the frequency py is small and some of the
inclusion probabilities Pr(é,{} =1y, I*) are close to 0.5.
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MCMC

Sample 6 from p(d|fi,...,fr,7,y):

Sample B and 02,...,02 from p(B,02,...,02|8,f1,...,fr,y).
Sample fi,...,fr from p(f1,...,fr|3, o%, co,02y).

Perform an acceleration step.

For each j =1,..., k, perform a random sign switch: substitute the draws
of {f¢}[_; and {,B,J m . with probability 0.5 by {—f}_; and {8}
otherwise leave these dlraws unchanged.

Sample 7; for j=1,..., k from 7|6 ~ B (ao +dj, bo + pj), where p; is the
number of free elements and d; = >-7 ; 6; is number of non-zero elements
in column j.

To generate sensible values for the latent factors in the initial model specification,
we found it useful to run the first few steps without variable selection.
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] Table: Exchange rate data; posterior distribution p(r|y) of the
Ordering of the H H
e number r of factors (bold number corresponding to the posterior
Reduced-rank ~ .. . .
loading matrix mode ) and number of visited models N, for various priors;
Prior . .
e —— frequency py, number of factors ry, and model size dy of the highest
Posterior e
inference probability model (HPM).
p(rly)

Prior 1 2 3 Ny PH ry dy

b =0.01 0 0.799 0.201 37 0.50 2 10

by = 0.0022 0 0.984 0.016 24 0.85 2 10

b = 0.001 0 0.974 0.026 15 0.89 2 10

GD 0 0.966 0.034 36 0.71 2 10

LW 0 0.944 0.056 37 0.69 2 10
New
identification
conditions

Theorem



Variance Table: Exchange rate data; marginal inclusion posterior probabilities
i Pr(6j; = 1y, 1*) for a fractional prior with b = by (bold elements

Identification
issues

Nt correspond to the HPM).

parameters

Ordering of the
variables A A
Reduced-rank 07 075
loading matrix
Prior us 1. 0
specification
Posterior Can 1. 0
inference
Yen 1. 1
FF 1. 1
Lira 1. 1
DM 1. 1
New
identification
conditions

Theorem



Table: Exchange rate data; posterior means of the factor loading
Loranee matrix, the idiosyncratic variances and the communalities for a
: two-factor model under the constraint C2 with 1 =1 and h = 3;
bold numbers correspond to non-zero elements in the factor loading
matrix of the 2-factor HPM.

Currency E(Auly, ") E(Anly,l) E(ofly,I")

rank
loading matrix

Pt us 0.960 0 0.081
' Can 0.951 0 0.098
Yen 0.449 0.418 0.615

FF 0.395 0.889 0.053

Lira 0.415 0.764 0.241

DM 0.408 0.765 0.245

New
identification
conditions

Theorem



Example 3: Maxwell's Children

Data
Scores on 10 tests for a sample of T = 148 children attending
‘V‘H’ a psychiatric clinic as well as a sample of T = 810 normal
Number of children.
Ordering of the

variables

e The first five tests are cognitive tests — (1) verbal ability, (2)

loading matrix
e spatial ability, (3) reasoning, (4) numerical ability and (5)
Posterior

inference verbal fluency. The resulting tests are inventories for assessing
orectic tendencies, namely (6) neurotic questionaire, (7) ways
to be different, (8) worries and anxieties, (9) interests and (10)

annoyances.
T While psychological theory suggests that a 2-factor model is
T‘}“‘ sufficient to account for the variation between the test scores,
e the significance test considered in Maxwell (1961) suggested to

fit a 3-factor model to the first and a 4-factor model to the
second data set.



Table: Maxwell's Children Data - neurotic children; posterior
distribution p(r|y) of the number r of factors (bold number
corresponding to the posterior mode ¥) and highest posterior

e identifiability constraint I* with corresponding posterior probability
Identificati . H .
S p(I*|y) for various priors; number of visited models N,; frequency py,
Number of .
e number of factors ry, and model size dy of the HPM; number of
Ordering of tt . .
i factors ry and model size dy of the MPM corresponding to I*;
Reduced-rank . .. . .
Bt o inefficiency factor 74 of the posterior draws of the model size d.
Prior
specification
P‘osumu p(r|y)
inference Prior 2 3 4 5-6 * p(1* |y)

b=103 0.755 0231 0014 0 (1,6) 0.532

by = 6.8 - 104 0.828 0.160 0.006 0 (1,6) 0.623

bg =4.9-107% 0.871 0127  0.001 0 (1,6) 0.589

b=10"* 0.897  0.098  0.005 0 (1,6) 0.802

GD 0.269 0.482 0.246 0.003 (1,2,3) 0.174

LW 0.027 0.199 0.752 0.023 (1,2,3,6) 0.249

Prior Ny, PH ry dy Y dy Td
b=10"3 1472 0.20 2 12 2 12 30.9

New by =6.8- 10~4 976 0.27 2 12 2 12 27.5
ottt bp=4.9-10"% 768 034 2 12 2 12 226
eendlidions b=10"% 421 0.45 2 12 2 12 18.1
hearem GD 4694 006 2 15 3 19 406
ek 3 W 7253 001 4 24 4 24 325




Table: Maxwell's Children Data - normal children; posterior
distribution p(r|y) of the number r of factors (bold number

e corresponding to the posterior mode ¥) and highest posterior
P identifiability constraint I* with corresponding posterior probability
Number o p(I*|y) for various priors; number of visited models N, ; frequency py,
parameters .
Ordering of the number of factors ry, and model size dy of the HPM; number of
variables . H
e — factors ryy and model size dy of the MPM corresponding to I*;
loading matrix . . . .
Prior inefficiency factor 74 of the posterior draws of the model size d.
specification
Pt p(r1y)
Prior 3 4 5 6 ™ p(1* |y)
b=10"73 0 0391 0.604 0005 (12456) 0254
by=12-10"% 0 0.884 0.116 0 (1,2,4,5) 0.366
b=10"% 0 0.891 0104 0.005 (1,2,4,5) 0.484
GD 0 0396 0594 0 (12456) 0229
LW 0 0.262 0.727 0.011 (1,2,4,5,6) 0.259

Prior N, PH ry dy m dy Ty
b=10"3 4045 1.79 5 26 5 27 301
by =12-10"% 1272 1141 4 23 4 23 285
e b=10"% 1296 1217 4 23 4 23 201
conditions GD 4568 1.46 5 29 5 28 327
Theorem LW 5387  1.56 5 28 5 28 30.7

Example 3



Example 3

females, measurement system with binary items, start

Example 1: 130 measurements.
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Variance
structure
Identification
issues
Number of
parameters

Ordering of the
variables

Reduced-rank
loading matrix

Prior
specification

Posterior
inference

New
identification
conditions

Theorem

Conclusion

Conclusion

e Summary

New take on factor model identifiability

Generalized triangular parametrization

Customized MCMC scheme

Highly efficient model search strategy

Posterior distribution for the number of common factors

e Extensions

e Nonlinear (discrete choice) factor models
e Non-normal (mixture of) factor models
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