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1Joint work with Frühwirth-Schnatter.
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Example 1. Early origins of health

Conti, Heckman, Lopes and Remi (2011) Constructing
economically justified aggregates: an application of the early
origins of health. Journal of Econometrics.

Here we focus on a subset of the The British Cohort Study
started in 1970.

7 continuous cognitive tests (Picture Language
Comprehension,Friendly Math, Reading, Matrices, Recall
Digits, Similarities, Word Definition),

10 continuous noncognitive measurements (Child
Developmental Scale).

A total of m = 17 measurements on T = 2397 10-year old
individuals.
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Correlation matrix (rounded)

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1
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Normal factor model

For any specified positive integer k ≤ m, the standard k−factor
model relates each yt to an underlying k−vector of random
variables ft , the common factors, via

yt |ft ∼ N(βft ,Σ)

where
ft ∼ N(0, Ik)

and
Σ = diag(σ2

1, · · · , σ2
m)

Unconditional covariance matrix

V (yt |β,Σ) = Ω = ββ′ + Σ
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Variance structure

Conditional Unconditional

var(yit |f ) = σ2
i var(yit) =

∑k
l=1 β

2
il + σ2

i

cov(yit , yjt |f ) = 0 cov(yit , yjt) =
∑k

l=1 βilβjl

Common factors explain all the dependence structure among
the m variables.
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Identification issues

A rather trivial non-identifiability problem is sign-switching.

A more serious problem is factor rotation: invariance under any
transformation of the form

β∗ = βP ′ and f ∗t = Pft ,

where P is any orthogonal k × k matrix.
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Solutions

1. β′Σ−1β = I .

Pretty hard to impose!

2. β is a block lower triangular2.

β =



β11 0 0 · · · 0
β21 β22 0 · · · 0
β31 β32 β33 · · · 0

...
...

...
. . .

...
βk1 βk2 βk3 · · · βkk

βk+1,1 βk+1,2 βk+1,3 · · · βk+1,k
...

...
...

...
...

βm1 βm2 βm3 · · · βmk


Somewhat restrictive, but useful for estimation.

2Geweke and Zhou (1996) and Lopes and West (2004).
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Number of parameters
The resulting factor form of Ω has

m(k + 1)− k(k − 1)/2

parameters, compared with the total

m(m + 1)/2

in an unconstrained (or k = m) model, leading to the
constraint that

k ≤ m +
3

2
−
√

2m +
9

4
.

For example,

• m = 6 implies k ≤ 3,

• m = 7 implies k ≤ 4,

• m = 10 implies k ≤ 6,

• m = 17 implies k ≤ 12.



Example 1

Normal factor
model

Variance
structure

Identification
issues

Number of
parameters

Ordering of the
variables

Reduced-rank
loading matrix

Prior
specification

Posterior
inference

Example 2

Varimax
rotation and
correlated
factors

Parsimonious
BFA

New
identification
conditions

Theorem

Example 3

Conclusion

Ordering of the variables

Alternative orderings are trivially produced via

y∗t = Ayt

for some switching matrix A.

The new rotation has the same latent factors but transformed
loadings matrix Aβ.

y∗ = Aβf + εt = β∗f + εt

Problem: β∗ not necessarily block lower triangular.
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Solution

We can always find an orthonormal matrix P such that

β̃ = β∗P ′ = AβP ′

is block lower triangular and common factors

f̃t = Pft

still N(0, Ik) (Lopes and West, 2004).

The order of the variables in yt is immaterial when k is
properly chosen, i.e. when β is full-rank.
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Reduced-rank loading matrix

Geweke and Singleton (1980) show that, if β has rank r < k
then there exists a matrix Q such that

βQ = 0 and Q ′Q = I

and, for any orthogonal matrix M,

ββ′ + Σ = (β + MQ ′)′(β + MQ ′) + (Σ−MM ′).

This translation invariance of Ω under the factor model implies
lack of identification and, in application, induces symmetries
and potential multimodalities in resulting likelihood functions.

This issue relates intimately to the question of uncertainty of
the number of factors.
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Prior specification

Loading matrix:

βij ∼ N(0,C0) when i 6= j ,

βii ∼ N(0,C0)1(βii > 0) when i = 1, . . . , k

Idiosyncratic variances

σ2
i ∼ IG (ν/2, νs2/2)

where s2 is the prior mode of each σ2
i and ν the prior degrees

of freedom hyperparameter.

We eschew the use of standard improper reference priors
p(σ2

i ) ∝ 1/σ2
i , since such priors lead to the Bayesian analogue

of the so-called Heywood problem (Martin and McDonald,
1975, and Ihara and Kano, 1995).
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Gibbs sampler
Factor scores

ft ∼ N(Vf β
′Σ−1yt ,Vf )

where Vf = (Ik + β′Σ−1β)−1.
Idiosyncrasies

σ2
i ∼ IG((ν + T )/2, (νs2 + di )/2)

where di = (yi − f β′i )′(yi − f β′i ).
First k rows of β

βi ∼ N(Mi ,Ci )1(βii > 0)

where

Mi = Ci

“
C−1

0 µ01i + σ−2
i f ′i yi

”
C−1

i = C−1
0 Ii + σ−2

i f ′i fi .

Last m − k rows of β
βi ∼ N(Mi ,Ci )

where

Mi = Ci

“
C−1

0 µ01k + σ−2
i f ′yi

”
C−1

i = C−1
0 Ik + σ−2

i f ′f .
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Example 2. Exchange rate data

• Monthly international exchange rates.

• The data span the period from 1/1975 to 12/1986
inclusive.

• Time series are the exchange rates in British pounds of
• US dollar (US)
• Canadian dollar (CAN)
• Japanese yen (JAP)
• French franc (FRA)
• Italian lira (ITA)
• (West) German (Deutsch)mark (GER)

• Example taken from Lopes and West (2004)
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Posterior inference of (β,Σ)

1st ordering

E (β|y) =


US 0.99 0.00
CAN 0.95 0.05
JAP 0.46 0.42
FRA 0.39 0.91
ITA 0.41 0.77
GER 0.40 0.77

 E (Σ|y) = diag


0.05
0.13
0.62
0.04
0.25
0.28


2nd ordering

E (β|y) =


US 0.98 0.00
JAP 0.45 0.42
CAN 0.95 0.03
FRA 0.39 0.91
ITA 0.41 0.77
GER 0.40 0.77

 E (Σ|y) = diag


0.06
0.62
0.12
0.04
0.25
0.26
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Posterior inference of ft
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Illustration of multimodality
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Varimax rotation

Proposed by Kaiser (1958) the varimax method of orthogonal
rotation aims at providing axes with as few large loadings and
as many near-zero loadings as possible.

They are also known as dedicated factors.

Notice that the method can be applied to classical or Bayesian
estimates in order to obtain more interpretable factors.
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Example 1: ML estimates

i Measurement β̂i1 β̂i2 σ̂2
i

1 Picture Language 0.32 0.46 0.68
2 Friendly Math 0.57 0.59 0.34
3 Reading 0.56 0.62 0.30
4 Matrices 0.41 0.51 0.57
5 Recall digits 0.31 0.29 0.82
6 Similarities 0.39 0.53 0.57
7 Word definition 0.43 0.55 0.52
8 Child Dev 2 -0.67 0.18 0.52
9 Child Dev 17 -0.69 -0.11 0.51
10 Child Dev 19 -0.74 0.32 0.35
11 Child Dev 20 -0.45 0.33 0.69
12 Child Dev 23 -0.75 0.42 0.26
13 Child Dev 30 -0.52 0.28 0.66
14 Child Dev 31 -0.45 0.25 0.73
15 Child Dev 33 -0.42 0.31 0.73
16 Child Dev 52 0.41 -0.28 0.76
17 Child Dev 53 -0.69 0.41 0.36
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Example 1: varimax rotation

i Measurement β̂i1 β̂i2 σ̂2
i

1 Picture Language 0.00 0.56 0.68
2 Friendly Math 0.12 0.81 0.34
3 Reading 0.10 0.83 0.30
4 Matrices 0.04 0.66 0.57
5 Recall digits 0.09 0.41 0.82
6 Similarities 0.01 0.66 0.57
7 Word definition 0.03 0.69 0.52
8 Child Dev 2 -0.65 -0.25 0.52
9 Child Dev 17 -0.50 -0.49 0.51
10 Child Dev 19 -0.79 -0.17 0.35
11 Child Dev 20 -0.56 0.01 0.69
12 Child Dev 23 -0.85 -0.09 0.26
13 Child Dev 30 -0.58 -0.07 0.66
14 Child Dev 31 -0.51 -0.05 0.73
15 Child Dev 33 -0.52 0.02 0.73
16 Child Dev 52 0.49 0.01 0.76
17 Child Dev 53 -0.80 -0.06 0.36
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Example 1: Bayesian estimation

i Measurement β̃i1 β̃i2 σ̃2
i

1 Picture Language 0 0.57 0.68
2 Friendly Math 0 0.81 0.34
3 Reading 0 0.83 0.31
4 Matrices 0 0.66 0.56
5 Recall digits 0 0.42 0.83
6 Similarities 0 0.66 0.56
7 Word definition 0 0.7 0.51
8 Child Dev 2 -0.68 0 0.54
9 Child Dev 17 -0.56 0 0.68
10 Child Dev 19 -0.81 0 0.35
11 Child Dev 20 -0.55 0 0.70
12 Child Dev 23 -0.86 0 0.27
13 Child Dev 30 -0.59 0 0.66
14 Child Dev 31 -0.51 0 0.74
15 Child Dev 33 -0.51 0 0.74
16 Child Dev 52 0.49 0 0.76
17 Child Dev 53 -0.8 0 0.36
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Correlated factors

Assume that

y ∼ N(βf ,Σ) and f ∼ N(0,H)

where H is a non-diagonal covariance matrix.

We can always decompose LHL′ = I such that

y ∼ N(β∗f ∗,Σ) and f ∗ = L′f ∼ N(0, Ik)

where β∗ = βL.

When β is “dedicated”, there is no guarantee that β∗ is also
dedicated.

Only when there is lots of prior information regarding β one
can entertain correlated factors.



Example 1

Normal factor
model

Variance
structure

Identification
issues

Number of
parameters

Ordering of the
variables

Reduced-rank
loading matrix

Prior
specification

Posterior
inference

Example 2

Varimax
rotation and
correlated
factors

Parsimonious
BFA

New
identification
conditions

Theorem

Example 3

Conclusion

Modern structured factor analysis

• Time-varying factor loadings: dynamic correlations
Lopes and Carvalho (2007)

• Spatial dynamic factor analysis
Lopes, Salazar and Gamerman (2008)

• Spatial hierarchical factors: ranking vulnerability
Lopes, Schmidt, Salazar, Gomez and Achkar (2010)

• Sparse factor models
Frühwirth-Schnatter and Lopes (2010)
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Parsimonious BFA

Frühwirth-Schnatter and Lopes (2010) introduce a more
general set of identifiability conditions for the basic model

yt = Λft + εt εt ∼ Nm (0,Σ0) ,

which handles the ordering problem in a more flexible way:

C1. Λ has full column-rank, i.e. r = rank(Λ).

C2. Λ is a generalized lower triangular matrix, i.e.
l1 < . . . < lr , where lj denotes for j = 1, . . . , r the row
index of the top non-zero entry in the jth column of Λ, i.e.
Λlj ,j 6= 0; Λij = 0, ∀ i < lj .

C3. Λ does not contain any column j where Λlj ,j is the only
non-zero element in column j .
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The regression-type representation

Assume that data y = {y1, . . . , yT} were generated by the
previous model and that the number of factors r , as well as Λ
and Σ0, should be estimated.

The usual procedure is to fit a model with k factors,

yt = βft + εt , εt ∼ Nm (0,Σ) ,

where β is a m × k coefficient matrix with elements βij and Σ
is a diagonal matrix.
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Theorem
Theorem. Assume that the data were generated by a basic factor model
obeying conditions C1− C3 and that a regression-type representation with
k ≥ r potential factors is fitted. Assume that the following condition holds
for β:

B1 The row indices of the top non-zero entry in each non-zero column of
β are different.

Then (r ,Λ,Σ0) are related in the following way to (β,Σ):

(a) r columns of β are identical to the r columns of Λ.

(b) If rank(β) = r , then the remaining k − r columns of β are zero
columns. The number of factors is equal to r and Σ0 = Σ,

(c) If rank(β) > r , then only k − rank(β) of the remaining k − r
columns are zero columns, while s = rank(β)− r columns with
column indices j1, . . . , js differ from a zero column for a single
element lying in s different rows r1, . . . , rs . The number of factors is
equal to r = rank(β)− s, while Σ0 = Σ + D, where D is a m ×m
diagonal matrix of rank s with non-zero diagonal elements
Drl ,rl = β2

rl ,jl
for l = 1, . . . , s.
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Indicator matrix

Since the identification of r and Λ from β by Theorem 1 relies
on identifying zero and non-zero elements in β, we follow
previous work on parsimonious factor modeling and consider the
selection of the elements of β as a variable selection problem.

We introduce for each element βij a binary indicator δij and
define βij to be 0, if δij = 0, and leave βij unconstrained
otherwise.

In this way, we obtain an indicator matrix δ of the same
dimension as β.
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Number of factors

Theorem 1 allows the identification of the true number of
factors r directly from the indicator matrix δ:

r =
k∑

j=1

I{
m∑

i=1

δij > 1},

where I{·} is the indicator function, by taking spurious factors
into account.

This expression is invariant to permuting the columns of δ
which is helpful for MCMC based inference with respect to r .

Our approach provides a principled way for inference on r , as
opposed to previous work which are based on rather heuristic
procedures to infer this quantity (Carvalho et al., 2008;
Bhattacharya and Dunson, 2009).
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Model size

The model size d is defined as the number of non-zero
elements in Λ, i.e.

d =
k∑

j=1

dj I{dj > 1}, dj =
m∑

j=1

δij .

Model size could be estimated by the posterior mode d̃ or the
posterior mean E(d |y) of p(d |y).



Example 1

Normal factor
model

Variance
structure

Identification
issues

Number of
parameters

Ordering of the
variables

Reduced-rank
loading matrix

Prior
specification

Posterior
inference

Example 2

Varimax
rotation and
correlated
factors

Parsimonious
BFA

New
identification
conditions

Theorem

Example 3

Conclusion

The Prior of the Indicator Matrix
To define p(δ), we use a hierarchical prior which allows
different occurrence probabilities τ = (τ1, . . . , τk) of non-zero
elements in the different columns of β and assume that all
indicators are independent a priori given τ :

Pr(δij = 1|τj) = τj , τj ∼ B (a0, b0) .

A priori r may be represented as r =
∑k

j=1 I{Xj > 1}, where
X1, . . . ,Xk are independent random variables and Xj follows a
Beta-binomial distribution with parameters Nj = m − j + 1, a0,
and b0.

We recommend to tune for a given data set with known values
m and k the hyperparameters a0 and b0 in such a way that
p(r |a0, b0,m, k) is in accordance with prior expectations
concerning the number of factors.
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The Prior on the Idiosyncratic
Variances

Heywood problems typically occur, if the constraint

1

σ2
i

≥ (Ω−1)ii ⇔ σ2
i ≤

1

(Ω−1)ii

is violated, where the matrix Ω is the covariance matrix of yt .

Improper priors on the idiosyncratic variances such as

p(σ2
i ) ∝ 1/σ2

i ,

are not able to prevent Heywood problems.
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We assume instead a proper inverted Gamma prior

σ2
i ∼ G−1 (c0,Ci0)

for each of the idiosyncratic variances σ2
i .

c0 is large enough to bound the prior away from 0, typically
c0 = 2.5.

Ci0 is chose by controlling the probability of a Heywood
problem

Pr(X ≤ Ci0(Ω−1)ii )

where X ∼ G (c0, 1). So, Ci0 as the largest value for which

Ci0/(c0 − 1) ≤ 1

(S−1
y )ii

or
σ2

i ∼ G−1
(
c0, (c0 − 1)/(S−1

y )ii

)
.
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The Prior on the Factor Loadings

We assume that the rows of the coefficient matrix β are
independent a priori given the factors f1, . . . , fT .

Let βδ
i · be the vector of unconstrained elements in the ith row

of β corresponding to δ. For each i = 1, . . . ,m, we assume
that

βδ
i ·|σ2

i ∼ N
(

bδ
i0,B

δ
i0σ

2
i

)
.

The prior moments are either chosen as in Lopes and West
(2004) or Ghosh and Dunson (2009) who considered a “unit
scale” prior where bδ

i0 = 0 and Bδ
i0 = I.
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Fractional prior

We use a fractional prior (O’Hagan, 1995) which was applied by
several authors for variable selection in latent variable models3

The fractional prior can be interpreted as the posterior of a
non-informative prior and a fraction b of the data.

We consider a conditionally fractional prior for the “regression
model”

ỹi = Xδ
i β

δ
i · + ε̃i ,

where ỹi = (yi1 · · · yiT )
′

and ε̃i = (εi1 · · · εiT )
′
. Xδ

i is a
regressor matrix for βδ

i · constructed from the latent factor
matrix F = (f1 · · · fT )

′
.

3Smith & Kohn, 2002; Frühwirth-Schnatter & Tüchler, 2008; Tüchler,
2008.
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Using
p(βδ

i ·|σ2
i ) ∝ p(ỹi |βδ

i ·, σ
2
i )b

we obtain from regression model:

βδ
i ·|σ2

i ∼ N
(
biT ,BiTσ

2
i /b
)
,

where biT and BiT are the posterior moments under an
non-informative prior:

BiT =
(

(Xδ
i )
′
Xδ

i

)−1
, biT = BiT (Xδ

i )
′
ỹi .

It is not entirely clear how to choose the fraction b for a factor
model. If the regressors f1, . . . , fT were observed, then we
would deal with m independent regression models for each of
which T observations are available and the choice b = 1/T
would be appropriate.
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The factors, however, are latent and are estimated together
with the other parameters. This ties the m regression models
together.

If we consider the multivariate regression model as a whole,
then the total number N = mT of observations has to be
taken into account which motivates choosing bN = 1/(Tm).

In cases where the number of regressors d is of the same
magnitude as the number of observations, Ley & Steel (2009)
recommend to choose instead the risk inflation criterion
bR = 1/d2 suggested by Foster & George (1994), because bN

implies a fairly small penalty for model size and may lead to
overfitting models.

In the present context this implies choosing bR = 1/d(k,m)2

where d(k ,m) = (km − k(k − 1)/2) is the number of free
elements in the coefficient matrix β.
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Most visited configuration

Let l? = (l?1 , . . . , l
?
rM

) the most visited configuration.

We may then estimate for each indicator the marginal inclusion
probability

Pr(δΛ
ij = 1|y, l?)

under l? as the average over the elements of (δΛ)?.

Note that Pr(δΛ
lj ,j

= 1|y, l?) = 1 for j = 1, . . . , rM .

Following Scott and Berger (2006), we determine the median
probability model (MPM) by setting the indicators δΛ

ij in δΛ
M to

1 iff Pr(δΛ
ij = 1|y, l?) ≥ 0.5.
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The number of non-zero top elements rM in the identifiability
constraint l? is a third estimator of the number of factors, while
the number dM of non-zero elements in the MPM is yet
another estimator of model size.

A discrepancy between the various estimators of the number of
factors r is often a sign of a weakly informative likelihood and
it might help to use a more informative prior for p(r) by
choosing the hyperparameters a0 and b0 accordingly.

Also the structure of the indicator matrices δΛ
H and δΛ

M

corresponding, respectively, to the HPM and the MPM may
differ, in particular if the frequency pH is small and some of the
inclusion probabilities Pr(δΛ

ij = 1|y, l?) are close to 0.5.
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MCMC

(a) Sample δ from p(δ|f1, . . . , fT , τ , y):

(b) Sample β and σ2
1 , . . . , σ

2
m from p(β, σ2

1 , . . . , σ
2
m|δ, f1, . . . , fT , y).

(c) Sample f1, . . . , fT from p(f1, . . . , fT |β, σ2
1 , . . . , σ

2
m, y).

(d) Perform an acceleration step.

(e) For each j = 1, . . . , k, perform a random sign switch: substitute the draws
of {fjt}Tt=1 and {βij}mi=j with probability 0.5 by {−fjt}Tt=1 and {−βij}mi=j ,
otherwise leave these draws unchanged.

(f) Sample τj for j = 1, . . . , k from τj |δ ∼ B
`
a0 + dj , b0 + pj

´
, where pj is the

number of free elements and dj =
Pm

i=1 δij is number of non-zero elements
in column j .

To generate sensible values for the latent factors in the initial model specification,
we found it useful to run the first few steps without variable selection.
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Example 2 (cont.)

Table: Exchange rate data; posterior distribution p(r |y) of the
number r of factors (bold number corresponding to the posterior
mode r̃) and number of visited models Nv for various priors;
frequency pH , number of factors rH , and model size dH of the highest
probability model (HPM).

p(r|y)
Prior 1 2 3 Nv pH rH dH
b = 0.01 0 0.799 0.201 37 0.50 2 10
bN = 0.0022 0 0.984 0.016 24 0.85 2 10
b = 0.001 0 0.974 0.026 15 0.89 2 10
GD 0 0.966 0.034 36 0.71 2 10
LW 0 0.944 0.056 37 0.69 2 10
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Table: Exchange rate data; marginal inclusion posterior probabilities
Pr(δΛ

ij = 1|y, l?) for a fractional prior with b = bN (bold elements
correspond to the HPM).

δΛ
·1 δΛ

·1
US 1. 0
Can 1. 0
Yen 1. 1.
FF 1. 1.
Lira 1. 1.
DM 1. 1.
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Table: Exchange rate data; posterior means of the factor loading
matrix, the idiosyncratic variances and the communalities for a
two-factor model under the constraint C2 with l1 = 1 and l2 = 3;
bold numbers correspond to non-zero elements in the factor loading
matrix of the 2-factor HPM.

Currency E(Λi1|y, l?) E(Λi2|y, l?) E(σ2
i |y, l?)

US 0.960 0 0.081
Can 0.951 0 0.098
Yen 0.449 0.418 0.615
FF 0.395 0.889 0.053

Lira 0.415 0.764 0.241
DM 0.408 0.765 0.245
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Example 3: Maxwell’s Children
Data

Scores on 10 tests for a sample of T = 148 children attending
a psychiatric clinic as well as a sample of T = 810 normal
children.

The first five tests are cognitive tests – (1) verbal ability, (2)
spatial ability, (3) reasoning, (4) numerical ability and (5)
verbal fluency. The resulting tests are inventories for assessing
orectic tendencies, namely (6) neurotic questionaire, (7) ways
to be different, (8) worries and anxieties, (9) interests and (10)
annoyances.

While psychological theory suggests that a 2-factor model is
sufficient to account for the variation between the test scores,
the significance test considered in Maxwell (1961) suggested to
fit a 3-factor model to the first and a 4-factor model to the
second data set.
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Table: Maxwell’s Children Data - neurotic children; posterior
distribution p(r |y) of the number r of factors (bold number
corresponding to the posterior mode r̃) and highest posterior
identifiability constraint l? with corresponding posterior probability
p(l?|y) for various priors; number of visited models Nv ; frequency pH ,
number of factors rH , and model size dH of the HPM; number of
factors rM and model size dM of the MPM corresponding to l?;
inefficiency factor τd of the posterior draws of the model size d .

p(r|y)
Prior 2 3 4 5 - 6 l? p(l?|y)

b = 10−3 0.755 0.231 0.014 0 (1,6) 0.532

bN = 6.8 · 10−4 0.828 0.160 0.006 0 (1,6) 0.623

bR = 4.9 · 10−4 0.871 0.127 0.001 0 (1,6) 0.589

b = 10−4 0.897 0.098 0.005 0 (1,6) 0.802
GD 0.269 0.482 0.246 0.003 (1,2,3) 0.174
LW 0.027 0.199 0.752 0.023 (1,2,3,6) 0.249

Prior Nv pH rH dH rM dM τd

b = 10−3 1472 0.20 2 12 2 12 30.9

bN = 6.8 · 10−4 976 0.27 2 12 2 12 27.5

bR = 4.9 · 10−4 768 0.34 2 12 2 12 22.6

b = 10−4 421 0.45 2 12 2 12 18.1
GD 4694 0.06 2 15 3 19 40.6
LW 7253 0.01 4 24 4 24 32.5



Example 1

Normal factor
model

Variance
structure

Identification
issues

Number of
parameters

Ordering of the
variables

Reduced-rank
loading matrix

Prior
specification

Posterior
inference

Example 2

Varimax
rotation and
correlated
factors

Parsimonious
BFA

New
identification
conditions

Theorem

Example 3

Conclusion

Table: Maxwell’s Children Data - normal children; posterior
distribution p(r |y) of the number r of factors (bold number
corresponding to the posterior mode r̃) and highest posterior
identifiability constraint l? with corresponding posterior probability
p(l?|y) for various priors; number of visited models Nv ; frequency pH ,
number of factors rH , and model size dH of the HPM; number of
factors rM and model size dM of the MPM corresponding to l?;
inefficiency factor τd of the posterior draws of the model size d .

p(r|y)
Prior 3 4 5 6 l? p(l?|y)

b = 10−3 0 0.391 0.604 0.005 (1,2,4,5,6) 0.254

bN = 1.2 · 10−4 0 0.884 0.116 0 (1,2,4,5) 0.366

b = 10−4 0 0.891 0.104 0.005 (1,2,4,5) 0.484
GD 0 0.396 0.594 0 (1,2,4,5,6) 0.229
LW 0 0.262 0.727 0.011 (1,2,4,5,6) 0.259

Prior Nv pH rH dH rM dM τd

b = 10−3 4045 1.79 5 26 5 27 30.1

bN = 1.2 · 10−4 1272 11.41 4 23 4 23 28.5

b = 10−4 1296 12.17 4 23 4 23 29.1
GD 4568 1.46 5 29 5 28 32.7
LW 5387 1.56 5 28 5 28 30.7



Example 1

Normal factor
model

Variance
structure

Identification
issues

Number of
parameters

Ordering of the
variables

Reduced-rank
loading matrix

Prior
specification

Posterior
inference

Example 2

Varimax
rotation and
correlated
factors

Parsimonious
BFA

New
identification
conditions

Theorem

Example 3

Conclusion

Example 1: 130 measurements.
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Conclusion

• Summary
• New take on factor model identifiability
• Generalized triangular parametrization
• Customized MCMC scheme
• Highly efficient model search strategy
• Posterior distribution for the number of common factors

• Extensions
• Nonlinear (discrete choice) factor models
• Non-normal (mixture of) factor models
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