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1 The Hampel optimality problem

In this talk we deal with the problem of �nding optimal robust estimates for
a multidimensional parameter. We give a new criterion based on a distance
vetween distributions to de�ne optimal estimates maximizing the e¢ ciency un-
der the model subject to a bound in the gross error sensitivity



Let f(x; �) be a family of densities, where x 2 Rp and � 2 � � Rq and let
F� be the corresponding distribution functions.

Let Fp be the space of distribution functions on Rp: An estimating functional
of � is a function T : Fp ! �:

Then for each F 2 Fp; T(F ) 2 �

Let T be an estimating functional and let x1; :::;xn be a random sample of a
distribution F Then the estimate associated to the functional T is

b�T;n = T(Fn);
where

Fn(x) =
#fi : 1 � i � n; xi � xg

n



is the empirical distribution. An example of an estimating functional with
p = q = 1 is

T = EF (x)

In this case

b�T;n = T (Fn) = EFn(x) =
1

n

nX
i=1

xi



Suppose that the functional T is weakly continuous. i.e.

Fn !D F; then T (Fn)! T (F )

Then, since

P (Fn !D F ) = 1

we have b�T;n = T (Fn)! T(F ) a.s.



T is Fisher consistent if

T(F�) = �

Suppose now that x1; :::;xn is a random sample of F�:

Then if the functional T is continuous and Fisher consistent we have

b�T;n ! T (F�) = � a.s.



Consider the contaminated distribution

F�;x;" = (1� ")F� + "�x

where �x is the point mass distribution at x that assigns probability one to x

Then, Hampel�s in�uence function is de�ned by

IF(T;x; �) =
@T(F�;x;")

@"

�����
"=0

;

and then

T(F�;x;")�T(F�) ' IF(T;x; �)"



Given a function  (x; �) : Rp�Rq ! Rq; an M-estimating functional T 
is de�ned by

EF ( (x;T (F )) = 0

This estimating functional is Fisher consistent if

E�( (x; �)) = 0



Let x1; :::;xn be a random sample of F� and letb�T;n = T (Fn);
where Fn is the empirical distribution. Then b�T ;n is the solution in � of

EFn( (x; �)) =
1

n

nX
i=1

 (x; �) = 0

Hampel proved that under very general regularity conditions we have

n1=2(b�T;n � �)!D N(0; V (T; �));

where !D denotes convergence in distribution and

V (T; �) = E�(IF(T;x; �)IF (T;x; �)
0);



In the case that � is a one-dimensional parameter (q = 1) we can de�ne the
gross error sensitivity (GES) by

(T; �) = sup
x
jIF (T;x; �)j:

(T; �) is a measure of the robustness of T under in�nitesimal contamination.

It is known that under general conditions the maximum likelihood estimate
(MLE) is the one with smallest asymptotic variance. However in most the
cases when TML is the functional corresponding to the ML estimate

(TML; �) =1

Note that the ML estimate of an M-estimate corresponding to the function

 0(x; �) =
@ log f(x; �)

@�



Hampel gave a criterion to �nd M-estimates which give an optimal trade o¤
between e¢ ciency under the model and in�nitesimal robustness. He proposed
to �nd the function  �(x; �) such that

V (T �; �) = minimum

among all the M-functionals satisfying the Fisher consistency condition

EF�( 
�(x; �)) = 0

and

(T �; �) � C(�)

where C(�) is a known function.



De�ne hc(t) : Rq ! Rq as the family of Huber functions given by

hc(t) =

8><>:
�c if t < c
t if jtj � c
c if t > c

:

Hampel obtained the optimal  for this problem which has the following form

 �(x; �) = hm(�)( 0(x; �)� d(�))

where d(�) and m(�) are chosen so that  � satis�es the Fisher consistency
condition

E�( 
�(x; �)) = 0

and

(T �; �) = C(�)



Consider now the case where the dimension of � is q > 1 Suppose that we
want to de�ne optimal M-estimates similar to those proposed by Hampel for
q = 1

Note that in this case since T is a vector

IF(T;x; �) =
@T(F�;x;")

@"

�����
"=0

;

is a vector too



Consider now the case where the dimension of � is q > 1 Suppose that we
want to de�ne optimal M-estimates similar to those proposed by Hampel for
q = 1

Note that in this case since T is a vector

IF(T;x; �) =
@T(F�;x;")

@"

�����
"=0

;

The simplest way to generalize the concept of GES is to de�ne the unstan-
dardized GES as

u(T; �) = sup
x
jjIF (T;x; �)jj:



Stahel (1981) obtained optimal M-estimates by �nding  �(x; �) such that

trace(V (T �; �)) = minimum

subject to

EF ( 
�(x; �)) = 0

and

u(T �; �) � C(�)



Since the de�nition of u in not invariant under model reparametrizations, the
corresponding optimal estimate is not equivariant either.

This means that if we reparametrize the family of distributions using the para-
meter

� = g(�)

and T�1 and T
�
2 are the optimal estimates corresponding to the parameters �

and � respectively, it does not hold that

T�2(F ) = g(T
�
1(F )):



Stahel (1981) proposed two invariant de�nitions of GES. The �rst is the self-
standardized GES, which is standardized using its own asymptotic covariance
matrix V (T; �) and is given by

s(T; �) = sup
x
(IF(T;x; �)0V �1(T; �)IF(T;x; �))1=2:



The second invariant de�nition of GES uses the information matrix J(�) and
its given by

i(T; �) = sup
x
(IF(T;x; �)0J(�)IF(T;x; �))1=2: (1)

Stahel (1981) derived the optimal M-estimates using the three de�nitions of
GES: u; s and i



However, these standardizations are de�ned ad hoc and it is not clear what
they mean .



However, these standardizations are de�ned ad hoc and it is not clear what
they mean

To overcome this problem, in this paper we propose optimal M-estimates which
use measures of robustness and e¢ ciency based on the Kullback-Leibler di-
vergence and Hellinger distance and we will show that they coincide with the
optimal ones using i(T; �) .



2 Gross Error Sensitivity Based on a distance

Consider two distributions F � and F on RP with densities f� and f respec-
tively. Then the Kullback Leibler divergence from F � to F

dkl(F
�; F ) =

Z
Rp
log

 
f(z)

f�(z)

!
f(z)dz:

= EF

 
log

 
f(z)

f�(z)

!!



We know that:

dkl(F
�; F ) � 0

and

dkl(F
�; F ) = 0 () F = F �



The Hellinger distance is de�ned by

dH(F
�; F ) = 2

Z
Rp
(f�1=2(z)� f1=2(z))2dz:

In what follows d will denote indistinctly dkl or dH



Assume a parametric model with density f(x; �) as in Section 1 and let F�(x)
be the corresponding distribution function.

Given �� and � we de�ne

D(��; �) = d(F��; F�)



Assume a parametric model with density f(x; �) and let F�(x) be the corre-
sponding distribution function.

Given �� and � we de�ne

D(��; �) = d(F��; F�)

This measure is invariant with respect to parameter transformations. If we
de�ne � = g(�) and �� = g(��); and we put F� = Fg�1(�) we have

d(F��; F�) = d(F��; F�)



Let T be a Fisher-consistent, estimating functional of �

T(F�) = �;

then

D(T(F�); �) = d(F�; F�) = 0



Consider now

F�;x;" = (1� ")F� + "�x

Since in general T(F�;x;") 6= �

D(T(F�;x;"); �) > 0

and we can de�ne the bias function based on a distance d by

Bd(T; �; ") = sup
x
D(T(F�;x;"); �)

as a measure of the robustness of the estimating functional T:



Since D(T(F�;x;"); �) is in general complicated we will try to obtain an
approximation using a Taylor expansion

The we will calculate the �rst and second derivatives of D(T(F�;x;"); �) at
" = 0:



Lemma. Let d be indistinctly dkl or dH and

F�;x;" = (1� ")F� + "�x

Then for any x 2 Rp we have

@D(T(F�;x;"); �)

@"

�����
"=0

= 0:

Since the �rst order derivative of D(T(F�;x;"); �) at " is 0, in order to
approximate D(T(F�;x;"); �) we need to compute the second order derivative



Lemma. Let d be indistinctly dkl or dH : Then

@2D(T(F�;x;"); �)

@"2

������
"=0

= IF(T;x; �)0J(�)IF(T;x; �); (2)

where J(�) is the information matrix

J(�) = E

0@ @ log(f(x; �))
@�

!21A



Then, according to the above Lemmas, for small " we have

D(T(F�;x;"); �)
�=

1

2

@2D(T(F�;x;"); �)

@"2

������
"=0

"2

=
1

2
IF (T;x; �)0J(�)IF (T;x; �)"2:



Then, according to the above Lemmas, for small " we have

D(T(F�;x;"); �)
�=

1

2

@2D(T(F�;x;"); �)

@"2

������
"=0

"2

=
1

2
IF (T;x; �)0J(�)IF (T;x; �)"2:

Then we de�ne the GES based on the distance d of the functional T as

d(T; �) = sup
x

0@@2D(T(F�;x;"); �))
@"2

������
"=0

1A1=2 (3)

= sup
x

�
IF (T;x; �)0J(�)IF (T;x; �)

�1=2
(4)

= i(T; �): (5)



and we have

Bd(T; �; ") �
1

2
2i (T; �)"

2



3 Asymptotic e¢ ciency Based on d

Let x1; :::;xn be a random sample of F� and let T be an estimating functional
of � 2 Rq:

Suppose that b�T;n = T(Fn) satis�es
n1=2(b�T;n � �)!D N(0; V (T; �)); (6)



One invariant way to measure the performance of b�Tn when the true parameter
is � is to use

D(b�T;n; �) = d(Fb�T;n; F�):
The following result gives the asymptotic distribution of this measure .



Lemma. Let d be indistinctly dkl or dH : Assume that n1=2(b�T;n � �) !D
N(0; VT(�)): Then

nD(b�T;n; �)!D
1

2

qX
i=1

�i(�)v
2
i ; (7)

where

v1; :::vq are i.i.d. r.v. with distribution N(0; 1)

and

�i(�); 1 � i � q;

are the eigenvalues of

J(�)V (T; �):



Note that if T0 is the maximum likelihood estimator, V (T0; �) = J�1(�);

and then �1(�) = ::: = �q(�) = 1

Then we de�ne the following measure of asymptotic e¢ ciency of b�Tn based on
the distance d



AEd(T; �) =

E

0@1=2 qX
i=1

v2i

1A
E

0@1=2 qX
i=1

�i(�)v
2
i

1A
=

q
qX
i=1

�i(�)

=
q

trace(J(�)VT(�))
: (8)



Observe that since by Rao-Cramer

VT(�)� J�1(�) is positive semide�nite

then

�i(�) � 1 for 1 � i � q;

and therefore

AEd(T; �) � 1:



Observe that since by Rao-Cramer

VT(�)� J�1(�) is positive semide�nite

then

�i(�) � 1 for 1 � i � q;

and therefore

AEd(T; �) � 1:

Besides we have that

�i(�) = 1 for 1 � i � q i¤ V (T; �) = J�1(�);

and in this case AEd(T; �) = 1: This happens when T is the functional asso-
ciated with the MLE.



4 Optimal M-estimates in the case of a multidi-
mensional parameter

A natural way to de�ne equivariant optimal robust estimates using the Hampel
approach is as follows.

Find a function  �(x; �) such that

AEd(T ; �) = maximum

subject to that T � is Fisher-consistent i.e., it satis�es

E�( 
�(x; �)) = 0

and to

d(T ; �) � C(�):

where C(�) is a �xed function.



According to what have seen, this problem is the same as �nding the Fisher-
consistent M-estimate such that

trace(J(�)VT (�)) = minimum

subject to

i(�) � C(�):

This is precisely the problem of �nding the optimal M-estimate using the stan-
dardized GES i(�) studied by Stahel.



De�ne Hc(t) : Rq ! Rq as the multivariate Huber function given by

Hc(t) =

(
t if jjtjj � c
c
jjf jjt if jjtjj > c :

The optimal  for this problem which has the following form

 �(x; �) = HC(�)(A(�)( 0(x; �)� d(�)));

where d(�) : �! Rq, A(�) : �! Rq�q is a non-singular matrix,



De�ne Hc(t) : Rq ! Rq as the multivariate Huber function given by

Hc(t) =

(
t if jjtjj � c
c
jjf jjt if jjtjj > c :

The optimal  for this problem which has the following form

 �(x; �) = HC(�)(A(�)( 0(x; �)� d(�)));

where d(�) : � ! Rq, A(�) : � ! Rq�q is a non-singular matrix, The
functions d(�) and A(�) must be chosen so that  � satis�es

E�( 
�(x; �)) = 0

and

d(T �; �) = i(T �; �) = C(�)



One practical problem is the choice of the bound C(�).

One possible solution to this problem, is to choose for each � the constant
C(�) so that

AEd(T �; �) = 1� �

For example we can take � = 0:95

Open Problem To �nd the optimal estimates using other distances. For
example

Total variation

Kolmogorov

Prohorov



5 Example

We have dataset with the number of days at the hospital of 32 patients
classi�ed as �disorders of the nervous system�. We �t a negative binomial
model using the ML estimate and the optimal estimates with 95% and 80%
of e¢ ciency.

Table 1: Length of stay of 32 hospital patients

LOS 1 2 3 4 5 6 7 8 9 16 115 198 374
frequency 2 6 5 5 4 2 2 1 1 1 1 1 1
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Fig. 1 Frequency and cdf plots; bold lines indicate estimated frequencies.

affected by the outliers. This feature of the optimal M-estimates is due to the monotonicity
of Huber’s function hc(t) which does not clearly reject the outliers. M80 provides the best
fit and an expected LOS of 4.58 days.

An alternative model to describe the LOS distribution is the zero truncated negative
binomial model (Hilbe, 2008)

gα,µ(x) =
1

1− p0(α, µ)
fα,µ(x), x = 1, 2, .... (14)



6 Estimates with minimum GES.

Now we come back to the case of a one-dimensional parameter

Consider a location model where we have a family of densities

f(x� �)

where f is symmetric and unimodal. Huber (1964) showed that the

median

is the estimate with

smallest maximum bias

among all the location equivariant estimates



This implies that the M-estimate based on the sign function is the one

(T ; �) = minimum



Consider now an arbitrary family of densities

f(x; �); � 2 � � R

and suppose that we want to �nd the M-estimate with

(T ; �) = minimum

: In Maronna, Martin and Yohai (2006) the following result was proved



Theorem. Consider the score function

 0(x; �) =
@ log f(x; �)

@�

and suppose that

C(�; ��) = med�( 0(x; �
�))

is strictly monotone with respect to �� and continuous



Then the M-estimating functional T (F ) with minimum (T ; �) is obtained
by solving

medF ( 0(x; �)) = med�( 0(x; �))



Then the M-estimating functional T (F ) with minimum (T ; �) is obtained
by solving

medF ( 0(x; �)) = med�( 0(x; �))

Recall that the maximum likelihood estimating functional T0(F ) is given by

EF ( 0(x; �)) = E�( 0(x; �))) = 0

Note the similarity between the two estimates: the one with the minimum
variance and the one with the minimum GES



Corollary. Suppose that C(�; ��) is strictly monotone on �� and continuous
and that  0(x; �) is strictly monotone on x. Then the M-estimating functional
T (F ) with minimum (T ; �) is obtained by solving

medF (x) = med�(x);

This extends the result for the location model



Families of distributions with support on the nonnega-
tive integers Z�0

The assumption that C(�; ��) =med�( 0(x; �
�)) is strictly monotone on ��

is not satis�ed for the case of a discrete family of distributions



Families of distributions with support on the nonnega-
tive integers Z�0

The assumption that C(�; ��) =med�( 0(x; �
�)) is strictly monotone on ��

is not satis�ed for the case of a discrete family of distributions

In fact, the usual de�nition of medianis

med(F ) = minfk; F (k) � 0:5g

Since med(F�) take integer values, changing � a little in general the median
does not change.

Therefore the median can not identify �:



This suggest to change the de�nition of median so that the parameter � can
be identi�ed.



This suggest to change the de�nition of median so that the parameter � can
be identi�ed.

De�nition. Given a distribution F with support on the nonnegative integers
Z�0 and probability function p, the smooth median of F (will be denoted
by smed(F )) is the median of the continuous variable with density

f(x) = p(k); if k � 0:5 < x � k + 0:5



This suggest to change the de�nition of median so that the parameter � can
be identi�ed.

De�nition. Given a distribution F with support on the nonnegative integers
Z�0 and probability function p, the smooth median of F (will be denoted
by smed(F )) is the median of the continuous variable with density

f(x) = p(k); if k � 0:5 < x � k + 0:5

This means that we compute the median of a distribution spreading uniformly
the mass assigned to the value k within the interval (k � 0:5; k + 0:5]



This smooth median turns out to be

smed(F ) = med(F )� 0:5 + 0:5� F (med(F )� 1)
p(med(F ))

;

Then

med(F )� 0:5 < smed(F ) � med(F ) + 0:5



Given a family F� of distributions with values in Z�0; we can de�ne an esti-
mating functional of � by

smed(F ) = smed(F�)

We can state the following Theorem.



Given a family F� of distributions with values in Z�0; we can de�ne an esti-
mating functional of � by

smed(F ) = smed(F�)

We can state the following Theorem.

Theorem Assume that  0(x; �) is continuous on � and strictly monotone on
x and �: Then the estimating functional of � with smallest GES is de�ned by
T (F ) = � satisfying

smed(F ) = smed(F�): (9)



In�uence function

Let T (F ) be the functional de�ned by the value of � satisfying

smed(F ) = smed(F�): (10)

The in�uence curve of this estimate is very similar to the one of the median .
Under very general conditions



(a) If F�(med(F�)) > 0:5

IF(T; �; x) =

8><>:
�m0(�) if x < med(F )
m1(�) if x = med(F )
m0(�) if x > med(F )

where

jm1(�)j � m0(�)



(a) If F�(med(F�)) > 0:5

IF(T; �; x) =

8><>:
�m0(�) if x < med(F )
m1(�) if x = med(F )
m0(�) if x > med(F )

where

jm1(�)j � m0(�)

(b)If F�(med(F�)) = 0:5

IF(T; �; x) =

(
�m�0(�) if x � med(F )
m�1(�) if x > med(F )



Asymptotic distribution

Let b�n be de�ned by
smed(Fn) = smed(F�)

Then under very general conditions

(a) If F�(med(F�)) > 0:5

n1=2(b�n � �)!D N
�
0; �2(�)

�



(b) If F�(med(F�)) = 0:5;

n1=2(b�n � �)!D G�

where G� has a density g� of the form

g�(x) =

(
�0(x=�1(�)) if x < 0
�0(x=�2(�)) if x > 0

and where �0(x) is the density of a N(0; 1) distribution.



7 Application to the Poisson distribution

Consider now the case of the Poisson family

p(x; �) =
e���x

x!

In the next Figure we show r(�) = ��smed(F�):
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It can be noted that for � � 1; r(�) is quite constant.

In fact, we have 0:14 � r(�) � 0:165:



Let b�n the estimate de�ned by
smed(Fn) = smed(F�)

In the next Figure we display the asymptotic relative e¢ ciency of b�n with
respect to the maximum likelihood estimate (the sample mean) x. We denote
this e¢ ciency by

are(�) =
avar(x)

avar(b�)
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We note that 0:685 � are(�) � 0:82:



For large values of � it is very close to the e¢ ciency of the median as estimate
of the mean of a normal distribution 0.6366
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