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A motivation from neuroscience

We study a population of neurons, hereafter represented by a discrete set S.
We want to infer, from the observation of the neural activity, the structure of
the connected neurons.
The neural activity is represented by a configuration x in AS, where A is a
finite alphabet of answers.
The relations between neurons are encoded by a probability measure P on
AS. More precisely, we say that a site j is connected to i if there exists a
configuration x such that

P(x(i)|x(k), k ∈ S/{i}) 6= P(x(i)|x(k), k ∈ S/{i , j}).

The system is partially observed, i.e. we can only observe the values of the
configurations on a finite subset VM of S. The sample is defined by
X1:n(VM) = (X1(j), ...,Xn(j))j∈VM , where X1, ...,Xn are i.i.d P.
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Estimation of interacting neighborhood, some previous
works

For all i in S, let us denote by Si the set of j interacting with i . In order to
estimate Si , the methods usually required strong assumptions on P or on Si .

Si should be finite, with a known upper bound in Bresler et. al. (2008), Csizar
and Talata (2006), Bento and Montanari (2009).

Si can be infinite in Galves et. al. (2010), Ravikumar et. al (2009) but P has to
be a ferromagnetic Gibbs measure. Moreover, in Ravikumar et. al (2009), Si
should satisfy an incoherence assumption and in Galves et. al. (2010), the
strongest interacting points have to belong to a small (of order O(ln n)) fixed
neighbor of i .
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The oracle Approach

We propose an alternative approach to the problem. Instead of estimating
directly the set of interacting points, we focus on the estimation of the function
Pi|S defined, for all x in AS by

Pi|S(x) = P(x(i)|x(j), j ∈ S/{i}).

Let P̂ be the empirical measure. For all subsets V of VM , P̂i|V , defined, for all
configurations x by

P̂i|V (x) = P̂(x(i)|x(j), j ∈ V/{i})

is an estimator of Pi|S. The oracle approach consists in the research of the set
V̂ such that the risk of P̂i|V̂ is the smallest among all the estimator (P̂i|V )V⊂VM .
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Example

Consider the Ising model with the following interaction graph
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Example

The following graph shows the positive and negative discovery rates of an
oracle
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Overview of the results
The following results have been obtained.

In the L∞ case, the following results are proved in a generalization of the
Ising models. see arXiv:1010.4783

1 We build an estimator V̂ and we prove that it satisfies an oracle inequality,
i.e., with large probability∥∥∥Pi|S − P̂i|V̂

∥∥∥
∞
≤ C? inf

V⊂VM

∥∥∥Pi|S − P̂i|V

∥∥∥
∞

.

2 We deduce from an oracle V̂ a consistent estimator of Si (two-steps
method).

3 We obtain an efficient algorithm to compute our estimator and prove its
validity in the Ising model.

In the L2 case and in the Küllback case, the following results have been
obtained without any restriction on the random field.

1 We build an estimator V̂ and we prove that it satisfies an oracle inequality.
2 We justify the slope heuristic, that allows to optimize our penalization

methods for model selection.
3 The links between oracle and consistent estimator, and the efficient

algorithm can still be used but we do not justify it at this level of generality.
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Example

The following graph shows the performances, in the L∞-case, of V̂ in terms of
oracle properties.
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Selection & Cut
Selection

Plot of the number of samples n against the average of ratio

∥∥∥P̂i|V̂−Pi|S

∥∥∥
∞

infV⊂S‖P̂i|V−Pi|S‖∞
.
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The IN Problem

The following graphs show the performances, in the L∞-case, of our selected
model in terms of discovering properties.
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Discovery rates of V̂ and the two-steps estimator.
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The efficient algorithm

In order to emphasize the advantages of the efficient algorithm, we run it on
an Ising model with the following graph of interaction.
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A more realistic example
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Discovery rates

The following graph shows the discovery rates of the strongest interaction, the
2nd strongest,... of our efficient algorithm when the number of data increases.
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The end

Thank you very much!!!
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