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Objective

The main idea of this work is develop a hypothesis test when the
variables belong on the sphere. We will assume that we have a
random sample x1, ..., xn taking values in the d−dimensional unit
sphere Sd in IRd+1 with probability density function f (x).

Let G = {fβ(x) : β ∈ B} be a parametric family of density
functions where B is a subset of IRp.

We are interested in testing the following hypothesis

Ho : f (x) ∈ G for some βo ∈ B against H1 : f (x) 6∈ G
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Test

To test this hypothesis

Ho : f (x) ∈ G for some βo ∈ B against H1 : f (x) 6∈ G

Under H0, we can considered f
β̂

is an estimate of fβo
.

Under H1, we can considered fn is a kernel estimate of f

fn(x) =
c(h)

n

n∑
i=1

K

(
1− x ′xi

h2

)
where c(h) is a normalizing constant given by 1

c(h)
=
∫
SdK((1− x ′y)/h2)ωd (dx).

Then, we compare the estimators trough

The L2 distance:
∫

(fn(x)− f
β̂

(x))2 ωd(dx)

The L1 distance:
∫
|fn(x)− f

β̂
(x)| ωd(dx)
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Test

As in the Euclidean case, the kernel estimator is biased.

E (fn(x)) = E

(
c(h)

n

n∑
i=1

K

(
1− x ′xi

h2

))

= c(h)

∫
K

(
1− x ′y

h2

)
f (y)ωd(dy)

where Khg(x) = c(h)
∫

K
(

1−x ′y
h2

)
g(y)ωd(dy).
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Test

Then, Härdle and Mammen considered a modification to these
measures.

Tn =
∫

(fn(x)− Khfβ̂(x))2 ωd(dx)

Wn =
∫
|fn(x)− Khfβ̂(x)| ωd(dx)

with Khg(x) = c(h)
∫

K
(

1−x ′y
h2

)
g(y)ωd(dy).

We will compare the kernel estimator with the parametric
estimation of the expected value of the kernel estimator
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Asymptotic results for the L2 distance

The asymptotic distribution of Tn =
∫

(fn(x)− Khfβ̂(x))2 ωd(dx)
under the null hypothesis

We assume that

hdc(h)→ λ as n→∞ where λ depends on the kernel.

β̂ − βo = Op(n−1/2).

Some standard conditions on the kernel and the bandwidth.

we have that,

nhd/2
(
Tn − b

nhd

) D−→ N(0, 2σ2) under Ho
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Asymptotic results for the L2 distance

nhd/2
(
Tn − b

nhd

) D−→ N(0, 2σ2) under Ho

where

b =

∫ ∞
0

K 2(r)rd/2−1 dr

2d/2−1ωd−1

[∫ ∞
0

K (r)rd/2−1 dr

]2
,

σ2 = γd

∫
Sd

f 2(x) ωd(dx)

∫ ∞
0

rd/2−1g2
d (r)dr

with

γd =

{
2−1/2 d = 1

ωd−1ω
2
d−223d/2−3 d > 1

and

gd =

{∫∞
0
ρ−1/2K (ρ)[K (r + ρ− 2(rρ)1/2)+K (r + ρ+ 2(rρ)1/2)]dρ d =1∫∞

0
ρd/2−1K (ρ)

∫ 1

−1
(1− θ2)(d−3)/2K (r + ρ− 2θ(rρ)1/2)dθdρ d>1
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Asymptotic behavior under a sequence of local alternatives
for the L2 distance

The asymptotic distribution of Tn under a sequence of local
alternatives

If we consider the sequence of regular alternatives represented by

H1c : f (x) = fβo (x) +
1√

nhd/2
∆(x)

where
∫

∆(x)ωd(dx) = 0.
Under some conditions we have that

nhd/2
(
Tn − b

nhd

) D−→ N
(∫

∆2(x)ωd(dx), 2σ2
)

under H1c

where b and σ2 are defined in the previous result.
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Asymptotic results for the L1 distance

The asymptotic distribution of Wn =
∫
|fn(x)− Khfβ̂(x)|ωd(dx)

under the null hypothesis

If h→ 0,
√

nh→∞ and K satisfy standard conditions, Mason
(2000) proved, in the case of real variables, that

√
n

(∫
|fn(x)−f (x)|dx − E

∫
|fn(x)−f (x)|dx

)
D−→N(0, σ2(K ))

where σ2(K ) is a constant depending of the kernel. (Giné, Mason
and Zaitsev (2003) improved this result.)

The important property in this results is the rate of convergence.
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Asymptotic results for the L1 distance

The asymptotic distribution of Wn =
∫
|fn(x)− Khfβ̂(x)|ωd(dx)

under the null hypothesis

But the problem is that when the hypothesis is composite, the
parametric estimator of the density is also root-n consistent.

Wn =

∫
|fn(x)− Khfβ̂(x)|ωd(dx)

⇑
√

n(β̂ − β0)
D−→N(0, σ2(β0))

Now, we are working in this problem

√
n (Wn − E (Wn))

D−→ N
(
0, σ2

)
under H0 ???
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Parametric Bootstrap: composite hypothesis

The asymptotic results suggest the use of bootstrap methods
to calibrate the test when considering the L1 distance.

Moreover, for the L2 test statistic, the rate of convergence is
slow and so, we may expect that the normal approximation
will not work well for moderate sample sizes.

In order to provide an alternative to the asymptotic
distribution of test statistics, we will study a bootstrap
procedure.
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Parametric Bootstrap: composite hypothesis

The bootstrap procedure is based in the generation of resample
according to the parametric density estimation.

Step 1 Generate a random sample of size n, x∗1, . . . , x
∗
n from the

distribution f
β̂

.
Step 2 Compute Tn and Wn with the bootstrap sample and call it T ∗n

and W ∗
n , i.e.

T ∗n =

∫
(f ∗n (x)− Khfβ̂∗(x))2 ωd(dx)

W ∗
n =

∫
|f ∗n (x)− Khfβ̂∗(x)| ωd(dx)

where f ∗n and β̂
∗

are the kernel estimator and maximum
likelihood estimator based on x∗i .

Step 3 Repeat the Step 1 and 2 for B times and obtain the empirical
distribution of T ∗n1, . . . ,T

∗
nB or W ∗

n1, . . . ,W
∗
nB .

Let tn,α (or wn,α) the upper α−percentil of the empirical bootstrap
distribution, then we will reject Ho if Tn > tn,α. or (Wn > wn,α.)
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Validity of bootstrap procedure

The asymptotic distribution of T ∗n under the null hypothesis

Under some conditions, we have that the bootstrap distribution of
Tn, converges to the asymptotic null distribution of Tn.

nhd/2
(
T ∗n − b

nhd

) D−→ N(0, 2σ2) under Ho

where b and σ2 are defined in the previous result.
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Simulations

A simulation study was designed to evaluate the performance of
the test procedures under the Ho and under different alternatives
when we have finite sample size.
Let fµ0,κ0 a von Mises density with µ0 = π and κ0 = 5. We
consider the hypothesis,

Ho : f ∈ {fµ,κ} belong to von Mises family

we use the Epanechnichov’s kernel.

NR = 1000 replications with samples of size nsamp = 100
and Nboot = 1000 bootstrap replications.
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Simulations

To study the performance of test when the null hypothesis is false,
we select a set of alternatives from (1− δ)fπ,5 + δfπ/2,5 with
δ = 0.1, 0.2, 0.35, 0.5 where fπ,5 is the density under Ho and fπ/2,5

is a von Mises variable with mean µ = π/2 and κ = 5.
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Simulations Results:

Test L2 Test L1

0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bandwidth

em
pi

ric
al

 p
ow

er

0.2 0.4 0.6 0.8 1.0 1.2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

bandwidth

em
pi

ric
al

 p
ow

er

Goodness-of-fit test for density estimation with directional data



Example

This dataset consists on the directions by winds in two
meteorologic stations of Galicia, Spain in August 2009.
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Example

The idea is make a test to know if the winds directions have a von
Mises distribution.

We considered 5000 replications bootstrap.

estimators
stations µ̂ κ̂

B1 0.6086 0.645
C9 0.181 0.4697
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Example: stations B1 and C9
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That’s all. Thank you!
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